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We propose a new procedure for designing finite-difference schemes that inherit
energy conservation or dissipation property from complex-valued nonlinear par-
tial differential equations (PDEs), such as the nonlinear &tihger equation, the
Ginzburg—Landau equation, and the Newell-Whitehead equation. The procedure is a
complex version of the procedure that Furihata has recently presented for real-valued
nonlinear PDEs. Furthermore, we show that the proposed procedure can be modi-
fied for designing “linearly implicit” finite-difference schemes that inherit energy
conservation or dissipation property.o 2001 Academic Press
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1. INTRODUCTION

The first purpose of this paper is to propose a procedure for designing by rote fin
difference schemes that inherit energy conservation or dissipation property from “compl
valued” nonlinear partial differential equations (PDEs). As for “real-valued” nonlines
PDEs, recently Furihata has presented a procedure of the same type [5]. He considere
real-valued PDEs of the form

ou_ (2 S (o : nonnegative integgr Q)
ot ~ \ou) su " 9 9

1 Thiswork was partially supported by the Grant-in-Aid for Encouragement of Young Scientists and for Scient
Research (B) of the Ministry of Education, Science, Sports, and Culture of Japan, and by “Research for the Fi
Program” of Japan Society for the Promotion of Science.

425

0021-9991/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.



426 MATSUO AND FURIHATA

whereG = G(u, uy) is a function of bothu anduy = du/dx, andéG/Su is the variational
derivative ofG(u, uy) for u. He evolved a method of designing finite-difference scheme
that inherit energy conservation or dissipation property from the PDEs (1) by inventi
“discrete variational derivatives,” i.e., a rigorous discretization of variational derivative
which implies that inherited properties are satisfied exactly. An essential feature of
derived finite-difference schemes is that the inherited properties are kept even if the t
mesh size changes in the time evolution process, which enables us to use some appro
time mesh size adaptive methods to obtain numerical solutions.

We here take the same approach as Furihata does. The PDEs that we treat in this |
are of the form

3 5G
M0 2)
ot su
or
ou 8G
ot e ®)
u

whereu = u(x, t) is a complex-valued functior = G(u, uy) is a function of bothu
anduy = du/dx, andsG/su is the complex variational derivative @(u, uy) for u. As

is shown in Section 2, under certain boundary conditions, the solutions of the PDEs
enjoy the so-called “energy conservation property,” kgl G dx = 0, and the solutions of
the PDEs (3) enjoy the so-called “energy dissipation property,”;j’fgﬁG dx < 0. In this
paper we provide a procedure for designing the finite-difference schemes that inherit
above properties for PDE (2) or (3) by devising “complex discrete variational derivative:
i.e., arigorous discretization of complex variational derivatives. The derived schemes h
the feature that the inherited properties are kept even if the time mesh size changes it
time evolution process. Because of these properties the derived schemes are expec
be numerically stable, yield solutions converging to PDE solutions, and be sufficien
flexible to be treated.

The second, somewhat additional, purpose of this paper is to show that the propc
procedure can be modified for designing “linearly implicit” finite-difference schemes th
inherit energy conservation or dissipation property for the PDE (2) or (3) whose nonline
terms are of the forrju|®u (s: integer). A fundamental notion employed in the modification
is “multiple points complex discrete variational derivative,” which is a generalization of tf
complex discrete variational derivative. Since the derived schemes are linearly implicit,
only need to solve a linear system at each time step. It should be noted, however, tha
derived linearly implicit schemes lose the feature the schemes derived by the first propc
procedure possess, that is, the inherited properties are no longer kept if the time mesh
changes in the time evolution process.

This paper is organized as follows. In Section 2 we define the target complex-valued Pl
and review their properties. In Section 3 the notation we employ in this paper is defined :
some discrete calculus including the definition of the complex discrete variational derivat
is described. In Sectin4 a procedure for designing the conservative or dissipative finite
difference schemes is presented. In Section 5, following the proposed procedure we pre
schemes for some example equations, such as the nonlineaxdBder equation (NLS
equation for short), the complex-valued time-dependent Ginzburg—Landau equation (C
equation), and the Newell-Whitehead equation (NW equation). In Section 6 we modify 1
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procedure for designing the linearly implicit conservative or dissipative finite-differen
schemes, and following the modified procedure we design linearly implicit schemes for
odd-order NLS equation, the CGL equation, and the NW equation. We also show numet
results for the NW equation, which demonstrates that the derived linearly implicit sche
has some good features. Section 7 is the conclusion.

2. COMPLEX VARIATIONAL DERIVATIVE AND TARGET EQUATIONS

In this section we define the target equations and briefly review their properties (c
sipation or conservation of energy). To this end, we commence by defining the comg
variational derivative.

2.1. Complex Variational Derivative

Letu : [0, 00) x [0, L] — C be asmooth function (say(-, x) € C[0, oo), andu(t, -) €
C*#0, L]) andG(u, uy) be areal-valued functional afanduy, whereu, denotesiu/dx and
so on.G(u, uy) can be written as a function of four real variables Renu, Reuy, Imuy)
and we assume th& is C* with respect to the four components. We define another rea
valued functionaH (u) as

H ()

L
/ G(u, uy) dXx. 4)
0

The “variation” of H (u) is defined with the Gfeaux derivative oH (u) as

L G e
SH(u;m) = Iimo/ (WU en. Ut em) = GU. U
E—> 0 &

_/L 90G L 9G_ 9G =~ 9G_
Lo Voul T aaT T au ™ T aw

_/L ﬁ_iﬁ + &_EEJG n dX+ E +§_L
/o au  dx duy 7 au  dx auy 7 auX" aux" o

wheren : [0, 00) x [0, L] — Cis asmooth functiorg € R, andu is complex conjugate of
u. By the assumption o6 the partial derivatives are well defined. The “complex variationa
derivative ofG” is defined as what is enclosed () on the right-hand side of (5), i.e.,

T (6)

2Lz 2= @

Here it is worthy of attention that the variational derivatives are complex conjugates of e:
other, that is,

oG _ 6 8)

su  su
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2.2. Target Equations

The equations that we treat in this paper are those which are defined with the com
variational derivatives of5, and they are classified into two types: conservative type ar
dissipative type.

Conservative type. The equations are defined as

.8u_ 8G

where i= /—1. In physical context& is often called “free energy” or “local energy,” and
H is called “global energy.” The equation is called “conservative” because it conserves
global energyH, as can be easily seen as

dH(u)z/'—{<SG8u+SGE)LT}dX+[8Gau+8GaJ -
dt o Léu at su at duy ot Uy ot |,
2
)dx

_/L iac52 3G
o su su

+i| ==
=0, 9)

under the boundary condition which satisfies

3G 3 3G Ut
duy ot Uy at |,

We note that the periodic boundary condition or the zero Dirichlet condition satisfies (1
As a typical example of (2), the NLS equation

.au

i —Uxx—yulPlu (xe[0,L],t >0,y €eR, p=3,4,...), (11)
is well known.

Dissipative type. The equations are defined as

ou 8G
= (xeb.Llt>o. 3)

This equation dissipates the global enekfjyunder the condition (10) as follows:
d Ld
e Hu) = /O EG(U, Uy) dx

L(9Gau 9Gau 9G duy, 9G 9y
= ———t+ ==+ — + ——dx
0 ou at ou adt duy ot Jduy ot

L(sGau &G au 3G au  aG aut
= — =X+ [+ ==
o Léu at du ot duy ot aty at |,

L 2
_2/
Jo | 8u

dx
<0. (12)

3G
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The variational formulation (3) means that the dynamios isfexpressed as the gradient
flow of G(u), that is,u goes down along the steepest descent pa(aj [10].
As examples of (3), there is the well known real-coefficient CGL equation

5
8%’ — pUu+qufu+ru (xe[0,L],t>0,p>0,q<0reR),  (13)

and the NW equation

8u 8 | 82 2 (X7 y) € [07 LX] X [07 LY],
—(t — _ 2 s
o (Lxy) =y '“'“*(ax 2kcay2>u t>0,
uw, ke € R.
(14)

Note that the latter is two-dimensional in space variables.

3. DISCRETE SYMBOLS

In this section we describe the discrete symbols and the formulas employed in this pe
We also define the complex discrete variational derivatives which are the discrete analog
of the complex variational derivatives (6) and (7).

3.1. Basic Symbols and Formulas

Throughout this paper we use the notation below.
We denote the numerical solution as

U™ ~ukAx,mAt)  (keZ,m=0,12..), (15)

where Ax and At > 0 are the mesh sizes mandt, respectively. The time stegn) is
omitted unless indispensable.
We use the following difference operators:

d Uk — Uk

SQ'Uk AX , (16)
5 Uy = %, (17)
55U, 2 %, (18)
52U Uks1 — iL)J(ZvL kal’ (19)
59Uy d Uks2 — AUkea + BUk — U1 + kaz. (20)

Ax4

The following formula is analogous to the integration-by-parts formula in usual calcul
and holds for any two sequenddg andV (for proof, see [5]),

N N N
, . UVies + Ui M
> U@ VIOAX + Y (G U ViAx = |~ . k1%

k=0 k=0 k=0

(21)
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where ;L“”O UcAX = (3Up+ Uy + -+ +Un_1 + 2Un)AX  (trapezoidal rule) and

[UKR, = Un — Uo. By repeatedly using the above formula, we can also derive high
order summation-by-parts formulas.

3.2. Complex Discrete Variational Derivative

In this section we provide the definition of the complex discrete variational derivativ
which should be a discrete analogue of the variational derivatives (6) and (7).

Let us assume th&g : CN*t1 — RN*L, which is a discrete approximation G, is in the
separated form

M

Ga(U)k = Y Ip U1V g7 (6 U1 g7 (6 Uo ™ (22)
=1

whereM € {1,2,3,...}, N?, N, N~ €{2,3,4,...}, and p| g".q :C— C are as-

sumed to be analytic functions which satigiyu) = pi(u), ;" (U) = g;" (u), andg,” (U) =

0 (U) (u € C).2 Hereafter we abbreviatg (U, | asP (Uy), [0 (57 U [N asQ;F (Uy),

and|qg” (8 UM asQ; (Uk). Hq : CN*1 — R, which should be the discrete version of

H, is defined accordingly as

Ha(U) = Z”de)mx (23)
k=0

To follow the variation calculation (5), let us consider the differencegét the different
pointsU andV,

Ha(U) — Ha(V)

N
= "{Ga(U) — Ga(V)k}AX
k=0

0Gy 0Gy E—
2 {<a<u V>> Yo+ <a<u,V>)k(Uk_Vk)

0Gyq —_
_ st o T=e + _ st
(85+(U V)) Uk Oy Vi) + (85+(U,V)>k(5k Uy O Vi)

. 3Gy .
(ag (U V)> (5k Uk 8k Vk)"‘ <m>k(8k Uk—‘sk Vk)}AX
N
Z,,H<aaed > 5—<de) _5k+<_36d) }(uk—vk>
o U,Vv) 38+, V) / 35~ (U,V) /,
_08d ) (0G4 ) g Ld

3Gy N
24
+K88(u,V>>k] o (24)

2 This assumption means that we restrict the possible fo@{of u,) toG(u, u,) = Z|M:1| p(Uo| N [ (u) N,
whereg, andN, are defined similarly as above. Though it could be more general, we do this to keep the discus:
simple and to give the explicit forms of the complex discrete variational derivative.

Mz

+

+
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where

( 9Gq > d <Q|+(UK)Q|_(Uk)+Q|+(Vk)Q|_(Vk)>
AU V) )\ 2

« ( p(U) — pr (Vi)
Uk — W

(PI(UK) + PI(Vk)) <Q|(Uk) + QI(Vk))

) f(NF: pU, p (Vo) (25a)

e

2 2
X<q| (3¢ Ui) — g (6 Vi)
87U, — 8 Vi
<H(Uk) + H(vk)) (Qr(uw - Q.*(vk)>
2 2

» O B U — g (8 Vi)
8 Uk — & Wk

Gy
(88+(U, V))k

) f(NF: g (87U, o (6 Vi) (25b)

e

(Fow)
35-(U.V) /),

) f(N7; o7 (8 Ui, o7 (8 V) (25¢)

Gy 1 9Gq
<35(U V)) {<35+(U V)> (Uks1 — Vke1) + <35+(U,V)>k1(Uk — Vi)

0Gq —_—
Ui — Vi Y U=V
+<88+(U V)) (Ukg1— k+l)+<85+(U,V))k_1( k— Vi)
0Gy
U1 — Vi ] UV
+<aa O, V>) V1= 1)+<88‘<U,V>)k+1( W
Gy —_—
U - U=V p, (26
+<88 . V)) (Uk1— Vi 1)+<88(U,V))k+1( k k)} (26)
and
| B2z + a4z + -+ 127D, nseven
f(n;z,2) = 27)
m|Zl\"71+|21‘|;;|2|+22||22‘----+\22|"71’ n: odd

In the second equality of (24), a trivial equalip — &y = S(a@ — £)(B+ 1) + 3(a +
£)(B — n) which holds for anyw, 8, &, n € C is repeatedly used. In the third equality,
the summation-by-parts formula (21) is appli®@Gy/9(U, V) : CN*L x CN+1 . CcN+1L
corresponds t6G/au, and bothdGy/88T (U, V) : CNtL x CN+1 . CN+L andaGy/86~
(U, V) : CN+1 5 cN+1 . CN+1 correspond tdG/auy.

Now we define the complex discrete variational derivatives (corresponding to (6) ¢

(7)) as follows:
0Ga \ . ([ 9Gq o+ 3Gy
<a<u,V>>k 5k(88+<u,V>>k 8k<aa<u,V>)k (28)

(o)
8(U,V) K
<a<auGi/)> _Sk_(asf(idw) _8;<as—a<idw)‘ (29)
s k s k ’ k

( 3Gy )
s(U,V) J

e

e
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Note that the complex discrete variational derivatives are complex conjugates of e
other (corresponding to (8)), that is,

8Gy 8Gy
(5<U,V)>k"(6<u,v>)k' (30)
It should be noted that when
N
(C I
38U, V) )] ko

which is the discrete analogue of (10), is satisfied, the boundary effect vanishes in
right-hand-most side of (24):

Ha(U) — Ha(V)

! s —(__9Gd +(  8Gq
{Gow). % (o), (wow ) f o w

9Gq _ Gy N 3Gy -
(MuW)f%<%wIWL_%(wmIWX%W_Wﬁ“

WE

k

Il
o

+
—N

N
8Gyq 3Gy ——
=) Uk — Vi Uk — Vi) | AX. 32
; [(5(U,V)>k( k k)+(8(U,V)>k( k k)] (32)
Remark. In a more general case whe®involvesuyy, Uxxx, - - ., OF wWhere the space

dimension is more than one, the discrete variational derivativ® oén be defined in a
similar manner. We omit its general form because it is too complicated to be explici
written here. However, for a simple two-dimensional equation, i.e., the Newell-Whitehe
equation wheres involves uy, Uyx, Uyy, Uxyy, anduyyyy, a concrete form of the discrete
variational derivative is given in Sections 5 and 6.

4. DESIGN OF SCHEMES

In this section we design the finite-difference schemes for the target equations (2]
(3) with the complex discrete variational derivatives and prove that the finite-differen
schemes inherit the conservation or dissipation property.

First we define a discrete local ener@y, and then define the finite-difference scheme
for the conservative equation (2) by

At S(U(m+l), U(m)) )

and for the dissipative Eq. (3) by

M _ [ 8Ga (34)
At (UMD ym) k'

Furthermore, we discretize the boundary condition so that the resulting boundary cor

tion satisfies
G N
d
[(86(U<m+1> U<m>)> ] =0, (35)
’ kd k=0
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whichis a discrete analogue of (10). For example, for the periodic boundary condition or
zero Dirichlet boundary condition, we sgf™ = U™ orU{™ = U™ = 0, respectively.
These finite-difference schemes conserve or dissipate the discrete global energy.

THEOREM 4.1 (discrete energy conservatijon Let U™ be a solution 0{33) with the
boundary condition which satisfig85). Then the global energy 40J™) is conserved
that is

Ha(U™) = Hg(U?) m=123,..)). (36)

Proof.

g{w(umw) - Ho(U™)

1 1
= A_ {G (UM™Y), — Gg(U™), } Ax
_ i// §Gq Ulim+l) - Ulim)
o —~ ym+1 U(m)) ; At
1
+ Uém-&- ) _ Ulgm) AX
S U(m+1) U(m)) ) At
N 2 2
, 3Gd . SGd
= Z/ mrD - mrD AXx
- (U™ ™) | (U™ ™) |
—0. (37)
|

THEOREM 4.2 (discrete energy dissipatipn Let U™ be a solution of(34) with the
boundary condition which satisfi¢35). Then the global energyddJ™) dissipatesthatis,

Ha(UM™Y) < Hg(U™)  (m=0,1,2,...). (38)

Proof.

S (H(U™2) = Hy(U™)

N
= D B(UM), — Ga(U™), ) Ax
k=0

—XN:” < 5Gy > <Uém+1>_uém)>
- 5(u(m+l)’U(m)) y At
D _
+<a<w"iidm> ()
’ k
=-2)"

2
< 5Gg )
(m+1) (m)
k=0 S(Um+ ’Um) k

AX
<0. (39)

i
o

N
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Because of the nonlinearity in the PDE, (2) or (3), the derived schemes become nonlir
in general. Hence some time-consuming iterative solver such as the Newton metho
required. But it does not necessarily imply that the all schemes are costly, since the t
step widthAt in the schemes may be taken far larger than in the naive “fast” schemes.

It is also worth mentioning thakt can be taken adaptively. In fact, Scheme (33) or (34
and the conservation theorem 4.1 or dissipation theorem 4.2 depend only on two consec|
time steps, and therefore a changeAtfdoes not destroy the dissipation or conservatior

property.

5. APPLICATIONS

In this section we present several applications.

5.1. The NLS Equation

There are many PDEs described in the form (2). Among them, the most prominent P
is the nonlinear Scldinger equation (NLS)

.ou

== U — ylulPlu  (xe[0,Ll,t >0,y eR, p=3,4,...). (11)

The NLS equation is not only of physical interest in applications such as nonlinear opt
and plasma physics, but also of mathematical interest because it may exhibit blowuj
become chaotic. We refer the reader to the surveys [2, 15] and the references therei
physical and theoretical aspects of the NLS equation.

Up to the present many numerical studies have been done by various numerical meth
such as the finite-difference method and the finite-element method (see Taha [16] ft
review). Delfouret al.[3] constructed a finite-difference scheme on the whole spatial doma
and proved that it is conservative. Akrivis [1] discussed the Galerkin analogue of Delfou
scheme and showed the existence, uniqueness| amairor estimate of the solution in
the cubic casef = 3). Fei [4] proposed a conservative linearly implicit finite-difference
scheme, which can be regarded as a linear version of Delfour’s scheme and showeéd th
error estimate in the cubic casp £ 3).

We here consider the NLS equation (11) under the periodic boundary condition, i.e.,
anyt > 0,

u(t, 0) = u(t, L),
{af Y ()
As is well known, the local energ$®(u, uy) for the NLS equation is given as
2 2y +1
G(u, uy) = —|ux|® + ——[u|"*, (41)

p+1

and accordingly the global enerd¥/(u) is given as

H (u) =/L(—|u |2+2—V|u|p+l) dx (42)
0 X p+1 ’
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Following our proposed procedure, we first define the discrete local energy as

8TUk|2 + |85 Uk)?
Gd(U)ké—| Kk Ul“ + 18, Ukl

2y
Uy [P+ 43
5 p+l| Kl (43)

Note that thisG4 approximatess(u, uy) above, and it can be decomposed as assumed
(22). Calculating the complex discrete variational derivatives mechanically by (28), (2
and (25a), (25b), (25c), we have

SGd _ (S<2) Uém+l) + Uém)
s(U™D U™) | k 2

2)/ ‘Uém+l) ’ p+1 ’Uém) ’ p+1 Uém+1) + Uém) (44)
PHIN UM — U™ 2 |

Then from (33) we obtain the finite-difference scheme:

(U UMY e (U 0T
At k 2

~ 2)/ ’Uém+1)‘p+1 _ |Ul£m)‘p+1 Uémﬂ) —}—Uém) (45)
PHL\ U™ — U™ 2 ‘

Here we impose the discrete periodic boundary condition
U™ =ul kezZ,m=012...), (46)

corresponding to the periodic boundary condition (40).

As the periodic boundary condition (46) satisfies (35), the conservation theorem 4.1 ho
Moreover, the scheme is “probability” conservative; i.e., it inherits a discrete analogue
the probability conservation Iaf,()L |ul? dx = const. [3]. With these properties the scheme is
shown to be stable aric?-convergent whemp = 3. It is also shown that the same theorem
and the same properties stand under the zero Dirichlet boundary condition. The detail
beyond the scope of this paper and are therefore omitted here [9].

We should note that, for a simple case, i.e., the case whetet-oo, Delfouret al. [3]
proposed the same scheme as (45) with no mention of its derivation.

5.2. The CGL Equation

As noted earlier, the complex-valued Ginzburg—Landau equation (CGL) [7],

%:puxx+q|u|2u+ru xe[0,L],t>0,p>0,<0,r eR), (13)
is an example of the dissipative equation (3). It describes evolution phenomena in the v
range of physical applications, such as fluid dynamics, pattern formation, and the the
of superconductivity. The CGL equation also attracts many mathematicians because it
be regarded as a dissipative version of the NLS equation, and may also exhibit blowup
In these contexts many numerical experiments have been carried out. But they are m:
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of physical interest, and few papers are devoted to the study of numerical Schemes [8,
especially to dissipative schemes.
We consider the CGL Eq. (13) under the periodic boundary condition (40). The loc
energyG(u, Uy) is given as
G, t) = pluc® = JJul* —ruP, 47)

and accordingly the global enerdiy/(u) as

L
H(u)z/ <p|ux|2—g|u|“—r|u|2>dx. (48)
0

Following our proposed procedure, we first define the discrete local energy as

|8 Uk? + 18 Uk?
2

GaUy 2 p ( ) - %|Uk|4 — U2 (49)

Consequently, the discrete variational derivative becomes

2 _ e (U U U+ U
smn gy ) PR TT )T >

(m+1) (m) (m+1) (m)
5 <Uk 2+Uk )—r(u" 2+Uk ) (50)

Finally from (34) we obtain the finite-difference scheme

UIEm+1) _Uém) _ p8é2><uém+l)+ulim)> ‘q <‘Uém+1)|2+ |U|£m)‘2>

At 2 2

U(m+1) + U(m) U(m+1) + U(m)
x (% +r % . (51)

Here we impose the discrete periodic boundary condition (46). Since the periodic bounc
condition (46) satisfies (35), the dissipation theorem 4.2 holds.

This scheme seems not to have been pointed out explicitly in the literature, although
just the CGL version of the Delfour scheme for the NLS Eq. [3]. It can be proved that tl
scheme is stable aric?-convergent (the proof is omitted here).

5.3. The NW Equation
As stated earlier the Newell-Whitehead (NW) Eq. [12]
X, o,L 0, Ly],
M x,y) = — Julu + i 2u ( y)E[t XéX[ !
TR ax 2k ay? -
w, ke €R,

(14)
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is an example of the two-dimensional dissipative Eq. (3), which describes the genera
of roll patterns in the Bhard convection flow. For the NW equation, there seem to be fe
studies on numerical schemes.

Here we consider the NW equation with the periodic boundary condition (40) impos
in both directions. It is well known that the local energy for the NW equation is
au i 92ul’

G(U, uy, = —ulul? — 52
(U, Ux, Uyy) = —ulul® + 5 IUI +lox 2K 3y2 (52)

Integrating the local energy on the domainl[Q] x [0, L], we have the global energy for
the NW equation:

Le ply
HW) = / / <u|u| 4= |u| +

To derive a finite-difference scheme, we have to follow the proposed procedure, wh
was essentially formulated for the one-dimensional PDEs. But the procedure can als
applied to higher dimensional problems as long as they can be directly decomposed
the space variables. And the NW problem above is the case.

First, we define the discrete energy as

i 92ul?
ax 2k ay?

) dx dy. (53)

d 1
Ga(U)ki = —ulUy 12+ §|Uk,l 14

1 2 2
~ 85Uk — =—87U 5 U 57U 54
+2<kk,l 2kc| kI| + [0k Ukl — 2kc| k|>, (54)
and accordingly define the discrete global energy as
d Nx NV
Ha(U) =) "> "Ga(U )k AXAY, (55)
k=0 1=0

whereN, andNy are the number of grid points iandy, Ax 4 Lx/Nx, Ay 4 Ly/Ny,
and the numerical solutiob]” ~ u(mAt, kAx, | Ay) is now CN+D®N+D yector. The
difference operators with the subscrigiperate id direction.

To define a discrete variational derivative we consider the differefaced) — Hq(V) by
analogy with the one-dimensional case as

NX " Ny " SGd
Ha(U) — Ha(V) = > "> (5(U V)> (Ut = Vi)
V) ki

k=0 1=0
§Gy R
+ (m)k’l(uk.l - Vk,l)}AXAy» (56)

where

§Gyg _ o {Yki A+ M n Ui 2 + Vit 12 ( Uk + Vi
ORI 2 2 2

2 e 1 4\ / Ukt + Vi
_ (8é>_E5§>3|< ) 4_k§8'( >)(T) (57)
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In the calculation above we use the summation-by-parts formukaaind!| directions
separately.
Then we have a finite-difference scheme:

mED) g m
U = U T
At

B 5Gq

(U™ u™) /|

B Uk(m+1) + U(m) ‘UQT+1)|2+ |U|ET)|2 (m+1) + U(m)
K 2 - 2 2

. (m+1) (m)
+(3ﬁ2>—'—5,§1>5|<2>_ L) (DY (58)
ke 4k? 2 )

We impose the discrete periodic boundary condition in both directions as

™ _ ym (m)
Uerm = Ukine = Uiian, - (59)

It is easy to see that under the discrete periodic boundary condition (59) the dissipa
property holds for the scheme.

6. MODIFIED PROCEDURE FOR DESIGNING LINEARLY IMPLICIT SCHEMES

In this section we modify the proposed procedure for designing linearly implicit finite
difference schemes that inherit energy conservation or dissipation property. For this pury
we introduce a fundamental notion multiple points complex discrete variational deriv
tive, which is a generalization of the complex discrete variational derivative. The mc
ified procedure can be applied to the PDE (2) or (3) whose nonlinear terms are of
form |u|®u (s = 1,2, ...), such as the odd-order nonlinear Sutiriger (NLS) equation,
the complex-valued Ginzburg—Landau (CGL) equation, and the Newell-Whitehead (N
equation.

6.1. Linearly Implicit Scheme for the NLS Equation

In this section we propose linearly implicit finite-difference schemes for the NLS equ
tion. To illustrate the basic idea of the modified procedure, we first discuss the derivatior
the linearly implicit scheme for the cubic NLS equation (a special caseswittl). Next
we generalize the process to cover the general case®j.

Let us consider the cubic NLS equation

iﬁ = Uy —yluu  (xe[0,L],t >0,y €R), (60)

whose energy is now

G(U, uy) = —[uy[?+ §|u|“. (61)
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To obtain alinearly implicit scheme, itis essential to understand the mechanism of how
nonlinearity in the energy is passed down to the equation through the variation calculat
In the cubic NLS equatioru|* in the local energys (61) is the source of the nonlinear term
|ul?u in the resulting Eq. (60). In general, the power of nonlinearity in the energy is alwa
1 higher than that of the resulting nonlinearity. Hence we easily come to the conclusion 1
if we want the resulting scheme to be linear we must reduce the power of nonlinearity
the energy to 2, at most. In the cubic NLS equation, for example, decomnbb;ﬁiﬂ)g“ to
IU™1210™ 2 will suffice and the corresponding part of the discrete variation calculatic

becomes

S = U P2

U™ 4y
— ’Uém)|2 ( k 5 k (Uém+l) B Uém 1))

U(m+1) + U(m—l) :
+ |Uém)|2 ( [ 5 k (Uéerl) _ Uém 1))_ (62)

Now (U™ 2U™Y + u™Y)/2, which is the approximation ofi|2u, is still on the order
of |ul?, but islinear with regard to the unknown variabldﬁm“).

With this observation we can now construct a whole linearly implicit scheme for the cut
NLS equation. We define a discrete local energy with two consecutive numerical soluti

as

Gd(U(m+l), U(m))k

o [BUMY P 4 5 U™ 4 UM + s U™

4
T %|Uém+l)|2|Uém) 2’ (63)
and accordingly the discrete global energy as
d N
Hd(U(m+1), U(m)) = Z”Gd(u (m+1)’ U(m))kAX. (64)
k=0

Taking its variation we have

where

Hd(U(m+1), U(m)) _ Hd(U(m), U(m—l))

(SGd Uém+1) _ Uémfl)
- 5(UHD Y™ Y-y 2

N (SGd Uém+1) _ Ulimfl)
s(U™D Y™ ym-Dy 2 ’

(65)

(SGd 1 (2)

S(U(erl), U(m), ym-1

= 5h (UM ™)
k

+ %‘Uém) ’2(Uém+l) + Ulim_l)) (66)
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3Gy B 3Gy
(UMD Y™, U(mfl))k a s(U™D Y™, U(m_1>)k

(67)

are “three points discrete variational derivatives,” which is a generalization of the discr
variational derivatives defined in Section 4.
With these we can now define a linearly implicit finite-difference scheme as

i Uém+1) o Ulim—l) (SGd
2At S (U(m+1), um, U(m—l)) )

1
=588 (UM U ) = ZIU™ UM 40 ).

(68)

Because the scheme (68) is linear with respetléfB*l), we need only to solve a linear
system at each time step, and therefore it is much faster than the nonlinear scheme
which needs heavy iterative calculations.

The scheme conserves the discrete energy under the periodic boundary condition
proof is omitted because it is straightforward by analogy).

THEOREM 6.1 (discrete energy conservation)'he solution of the linearly implicit
schemg(68) conserves the discrete energy; H4) under the periodic boundary condi-
tion (46). That is

Hg(UM™Y UM) = Hy(UP, U®)  m=123,..)). (69)

The discrete probability conservation law and the stability hAatonvergence of the
solution can be also established, under the periodic or zero Dirichlet bound:
condition.

It should be noted that the scheme (68) is the same one that Bei[4] proposed on
the whole spatial domain. They also proved that the scheme is energy- and probabi
conserving, stable, aricP-convergent on the whole spatial domain.

The above process can be easily extended to the general case of nonlineaun&ms
(s=2,3,...). We just have to decompos&).™|25*2 (in the energy) into]u,™"" 2
IUM™2. .. U™ StD)12] As a result, the three points discrete variational derivative is furthe
generalized to thenultiple points discrete variational derivative which depends on three c
more points’

Here we present a linearly implicit finite-difference scheme for the odd-order NLS equ
tion

.ou

= = U~ ylu®u  (xe[0,L],t>0,s=23...). (70)

3 In our notation “multiple points discrete variational derivative” denotes the three or more points one. The t
points one are excluded from this definition, though “multiple” includes two in English and hence the definiti
is a little confusing. This is a matter of terminology.
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For the odd-order NLS equation, the discrete local energy should be defined as

|5;Uém+l)|2+ |8;Uém)’2+-~-+ ‘Sljuém—s+1)’2

(M+1) | (M) (m-s+1y 4
Ga(U™D U™, U ) =

2(s+1)
.\ lalzuémﬂ)’Z + |8[U|Em)|2+ S |8;Uém_s+l)|2
2(s+1)
14 (M+1)12}, (M) |2 (Mm—s+1) |2
Jrs+1|uk U™ Uk ; (71)
and accordingly the discrete global energy is defined as
N
Hg(U™D, U™, UMty 237G (UMD, U™, ymsih) ax. (72)
k=0

Through the discrete variation calculation we have
i UIEerl) _ Uém—s) B 5Gy
(s+ 1At S osUM™D gm | gmos)y,

1
_ —55;<<2)(U1§m+1) n Uémfs))

LU P U PO 1 um). (73)
The resulting scheme depends on the solutiossta® time steps and is linear td)ém“).
This scheme conserves the discrete energy under the periodic boundary condition as foll

THEOREMG.2 (discrete energy conservation)lhe solution of the linearly implicit scheme
(73)conserves the discrete energy ([M2) under the periodic boundary conditi¢46). That
is,form=s,s+1,s+2,...

Hg (UMD U™ ymsth) = Hy(U®, ueD . u©). (74)

The proof is again trivial and hence omitted. This scheme also conserves a disc
analogue of the probability. This scheme seems to be new.

Remark. The resulting linearly implicit schemes have two minor drawbacks. First, it |
not “self-starting,” i.e., we need not only® but alsoU™ to start calculation. We must
calculateU™ in advance by other integrating schemes such as the Euler or Runge—Ki
method. And second, the time mesh adaptive methods can no longer be used becau:
linearly implicit schemes depend on the numerical solutions at more than two time ste
But this is not much of a problem because the adaptive methods are less important in the
linearly implicit schemes. This remark should be applied to all linearly implicit schem
mentioned in this paper.

6.2. Linearly Implicit Scheme for the CGL Equation

In this section we propose a linearly implicit scheme for the CGL equation

au
Fi PUix +qlul?u+ru  (xe[0,L],t>0,p>0,q<0,r €R). (13)
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442
For the CGL equation, we define the discrete local energy as

N

Y

H (U(erl)’ U(m))
k=0
=l o -

{ (’8+U m+1)‘ +|8|:“U|£m)|2+|8k l£m+1)| +|8 U(m>| )
}Ax. (75)

(U (m+1)U (m) UémH)Uém))

From the discrete energy we obtain the finite-difference scheme as

Uém+l) U(m 1) B 8 U(m+1)+Uém 1)
2At = pa 2

U(m+1) U(m—l)

TP ) g, (76)

+a|U™| ( 2

This scheme seems to be new.
THEOREM 6.3 (discrete energy dissipation)Let U™ be a solution of(76) with the

The scheme dissipates the energy under the periodic boundary condition as follows
periodic boundary conditio46). Then the global energy H{75) dissipatesthat is
S

(m=123,

(U(m+l)7 U(m)) < Hd(U(m), ym 1))
6.3. Linearly Implicit Scheme for the NW Equation
In this section we propose a linearly implicit scheme for the NW equation. We al:

i 82 2 (X y) € [07 LX] X [07 Ly]
——— | u t>0
2k. 3 2) ’
;0¥ w, ke € R,

present a simple numerical example
For the NW equation

(t. X, y) = pu — |ul “+(ax

we define the discrete energy as
(M+1) 2§ (M)
Uk,I ’ |Uk,l ‘

Hd<U(m+1), U(m))
Nx NY 1
235 S L T+ ) +
k=0 1=0
1 1
(8lju(m+) 2kC8I U(m+) + 8;UIET) 2kc U(m)
. 2
Z)UIE,TH_:L) + ‘&(ng 2kc5| U(m)

o U(m+l) o
k 2kc |

2
) }AxAy. (78)
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From the discrete energy we obtain the finite-difference scheme as

(M+1) m-1) (M+1) m-1)
Uo7 —Ug & Um _ |U(m) 2 Ui + Uy,
2At kl kl 2

H (m+1) (m-1)
4 (s Lsms@ _ 1@\ (Y~ + Yk (79)
K TR0 b - |

C

This scheme seems to be new.
The scheme dissipates the energy under the periodic boundary condition as follows

THEOREM 6.4 (discrete energy dissipation)Let U™ be a solution of(79) with the
periodic boundary conditiof69). Then the global energy H{78) dissipatesthat is

Ha(UM™P UM) < Hg(U™, Uu™D)  (m=1,23,..)). (80)

We present a simple numerical example of the Scheme (79). We borrowed a pr
lem from Sakaguchi [13]. There all numerical calculations are done by discretizing
x andy by finite-difference method and integrating in time by the fourth-order Runge
Kutta method. We call it simply the “Runge—Kutta scheme.” The initial dafe, y)
and the other parameters are chosen to be same as those given in [1B] &&/7/2,

w = 2772/800,Ly = 40, Ly = 20, Ny = 120, Ny = 60, and the initial stata(0, x, y) =
i = 9 /400e3m%/20(1 4-i - 0.0105%37/10 + i . 0.0095%37/10)), With these parameters
the Eckhaus instability phenomena should occur and the reconnection process of the
pattern proceeds until finally a stable oblique roll pattern emerges. In our sdiéme
needed to start computation is obtained by the Runge—Kutta scheme.

Figure 1 shows (@) the initial state = 0), (b) the final statgt = 100) obtained by the
our scheme (79) witiht = 5, and (c) the final statg = 100) by the Runge—Kutta scheme
with At = 1/120 which is ascertained to be the maximum size allowed for the scheme.
the figure the real part of the pattaitt, x, y) is plotted. Our scheme successfully obtainec
the right final pattern in spite of the extraordinary coarse time step width (600 times lar
than that of the Runge—Kutta scheme).

Figure 2 shows the evolution of the discrete energy. For the Runge—Kutta scheme, w
is not strictly dissipative, we computet) defined in (55) for comparison (the dashed line).
The scheme is so sensitiveAd that the energy suddenly blows up within a few steps whe
At exceeds the limit (i.,eAt > 1/120; not shown in the figure). In our scherdg defined
in (78) is plotted for two differentAt, namelyAt =5 and 6. According to the result
in the figure,At = 5/6 is enough in our scheme to obtain the same result as the one
the Runge—Kutta scheme, which is 100 times larger than that of the Runge—Kutta sche
When At is chosen extraordinary large\t = 5), the evolution becomes quite slow. But
the scheme strictly dissipates the energy until it reaches the same final pattern as al
where the final energy is also the same as the one by the Runge—Kutta scheme (or b
scheme with fine mesh). The experiment assures us that our scheme is insenaitiye tc
i.e., numerically stable.

Table | shows the computation time of the each scheme. We used the COMPAC
AlphaStation XP1000 (CPU: Alpha 21264, 500 MHz) and DIGITAL Fortran 77 V5.:
compiler. Each scheme is tested several times and the mean time is listed in the te
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FIG. 1. Initial and final states for the NW problem. (a) Initial state; (b) final state by our schi&ine- 5);
(c) final state by the Runge—Kutta scheme = 1/120).

According to the table our scheme is much faster than the Runge—Kutta scheme unde
favor of the largeAt and the linearity of the scheme.

From the numerical experiment, we may conclude that the linearly implicit scheme
fast and stable.
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FIG. 2. Dissipation of the discrete energies.

6.4. Remark—Linearly Implicit Schemes for the Real-Valued PDEs

The modified procedure can also be applied to the real-valued PDEs with the nonlinez
of u®> (s=2,3,...), such as the real-valued Ginzburg—Landau equation (also known
the Kolmogorov—Fisher equation)

d
au(x,t): PUxyx+qu®+ru (xe[0,L],t>0,s=2,3,...,p>0,0<0,r eR),
(81)
the (real-valued) Swift-Hohenberg equation

82

2
8X2+k§>u (xe[0,L],t>0,e k €R), (82)

0
—u(x,t) = eu —u*—ub —
at

and the Cahn—Hilliard equation

2
%u(x,t) = &(pw rud + quyy) (xe[0,L],t>0,p<0,q<0r>0). (83)

To design linearly implicit schemes for them, just decompgsi®
(Ulim+1>)2(uém))2 e (Uém’gﬂ))z, if sis even (84a)
umbyMm .y mesta, otherwise (84b)
and consider the multiple points discrete variational derivatives accordingly.

TABLE |
Computation Time in Each Scheme (Unit: Second)

Runge—Kutta scheme Our scheme = 5) Our scheméAt = 5/6)

125 27.8 45.2
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The detail of the derivation procedure and the proof of the dissipation properties
straightforward and hence omitted here. But it is worth mentioning that a linearly implic
scheme for the Cahn—Hlilliard equation designed by the modified procedure is unconditi
ally stable and_,-convergent [6]. This is a little surprising result, since the Cahn—Hilliarc
equation is known to be a hard problem for numerical methods, and everottieear
finite-difference scheme, which we formerly proposed in Furihata [5] and showed to
stable and convergent, was a big achievement.

Here we briefly comment on the derivation of the scheme (see [6] for the detailed analys
The local energys for the Cahn—Hilliard equation is

1o a1
G(u, ux) = 5 Pu"+ ru 2q(ux) . (85)
and Eq. (83) is defined as
au 3% /8G
a=&4w) (86)

To obtain a linearly implicit scheme we define the local energy as

(U™, U™ 4

NI =

pU(m+l)U(m) 4I‘ (Uém+l))2(U|£m))2

1 /(UM™Y (5cUM™D) 2 4 (57UM) + (8 U™)?
_2q< 4 )‘
(87)

Note that the nonlinear tergru* is decomposed tér (U\™)2(U™)? according to the
rule (84a). The linear terms are also decomposed appropriately. The global energy is def
as
N
Ha (U™, ym) 4 )23 7Gg(U™Y, U™), Ax. (88)
k=0

The three points discrete variational derivath@q/8 (UMY, UM U™-D) is defined in
like manner as the complex one. The scheme is defined with it as

U|£m+1) _ Uém—l) B 6(2> (SGd
2At B s(UMED ym ym-b)

(M+1) (m-1)
{pU(rm (Ukm+ Zu;”) (U™)?

U(m+1) + U(mfl)
+qs2 (—k 5 k . (89)

7. CONCLUSIONS AND COMMENTS

We proposed a new procedure for designing finite-difference schemes that inherit ene
conservation or dissipation property from complex-valued PDEs. The resulting scher
are generally nonlinear, but they can be solved adaptively in time. We also modified
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procedure so that linearly implicit schemes can be designed without losing the proper
Some of the well-known finite-difference schemes for the NLS equation such as Delfot
and Fei’s scheme can be regarded as particular results of the proposed procedures
schemes for the CGL and NW are all new and the linearly implicit scheme for the NW
proven to be efficient by a numerical experiment.

A possible claim to the presented procedure, however, may be that it suffers from
restriction that it is limited to essentially one-dimensional problems on uniform spat
meshes, and more complex domains or the use of nonuniform meshes are out of its sc
But the techniques employed in this paper are basically also useful when we utilize fir
elements instead of finite differences and that could solve the problem. We are now worl
on this issue and are going to present the result in the near future.
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